Syndromic surveillance on the Victorian chief complaint data set using a hybrid statistical and machine learning technique
نویسندگان
چکیده
Emergency Department Chief Complaints have been used to detect the size and the spread of disease outbreaks in the past. Chief complaints are readily available in digital formats and provide a good data source for syndromic surveillance. This paper reports our findings on the identification of the distribution of a few syndromes over time using the Victorian Syndromic Surveillance (SynSurv) data set. We utilized a machine learning-based Näıve Bayes classifier to predict the syndromic group of unseen chief complaints. Then, we analyzed the patterns of the distributions of three syndromes in the SynSurv data, specifically the Flu-like Illness, Acute Respiratory, and Diarrhoea syndromes, over sliding windows of time using the EARS C1, C2, and C3 aberrancy detection algorithms. The results of our analyses demonstrate that applying aberrancy algorithms over the variance data between two consecutive weeks reduces the large number of possible disease outbreaks detected using raw frequencies of the syndromic groups in the same time period, resulting in a more feasible approach for practical syndromic surveillance.
منابع مشابه
Syndromic Surveillance through Measuring Lexical Shift in Emergency Department Chief Complaint Texts
Syndromic Surveillance has been performed using machine learning and other statistical methods to detect disease outbreaks. These methods are largely dependent on the availability of historical data to train the machine learning-based surveillance system. However, relevant training data may differ from region to region due to geographical and seasonal trends, meaning that the syndromic surveill...
متن کاملAssessing the performance of American chief complaint classifiers on Victorian syndromic surveillance data
Syndromic surveillance systems aim to support early detection of salient disease outbreaks, and to shed timely light on the size and spread of pandemic outbreaks. They can also be used more generally to monitor disease trends and provide reassurance that an outbreak has not occurred. One commonly used technique for syndromic surveillance is concerned with classifying Emergency Department data, ...
متن کاملMultilingual chief complaint classification for syndromic surveillance: An experiment with Chinese chief complaints
PURPOSE Syndromic surveillance is aimed at early detection of disease outbreaks. An important data source for syndromic surveillance is free-text chief complaints (CCs), which may be recorded in different languages. For automated syndromic surveillance, CCs must be classified into predefined syndromic categories to facilitate subsequent data aggregation and analysis. Despite the fact that syndr...
متن کاملAutomated Syndromic Classifi cation of Chief Complaint Records
yndromic surveillance, a medical surveillance approach that bins data into broadly defi ned syndrome groups, has drawn increasing interest in recent years for the early detection of disease outbreaks for both public health and bioterrorism defense. Emergency department chief complaint records are an attractive data source for syndromic surveillance owing to their timeliness and ready availabili...
متن کاملA Hybrid Machine Learning Method for Intrusion Detection
Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016